Math 2263 Section 10 Quiz 2

Name: \qquad
Time limit: 15 minutes

1. (10 points) Reduce the equation

$$
4 x^{2}+y^{2}+4 z^{2}-4 y-24 z+36=0
$$

to one of the standard forms and state which kind of quadric surface it represents.
Solution: Completing squares, we get

$$
\begin{aligned}
0 & =4 x^{2}+\left(y^{2}-4 y+4-4\right)+4\left(z^{2}-6 z+9-9\right)+36 \\
& =4 x^{2}+(y-2)^{2}-4+4(z-3)^{2}-36+36 .
\end{aligned}
$$

Rewriting,

$$
4 x^{2}+(y-2)^{2}+4(z-3)^{2}=4 .
$$

Finally we divide by 4 to get the standard form

$$
x^{2}+\frac{(y-2)^{2}}{4}+(z-3)^{2}=1
$$

which is an ellipsoid.
2. (10 points)Show that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{3} \sin ^{2} x}{x y^{4}+x^{5}}
$$

does not exist. Explicitly state along which paths you are evaluating the limit.
Solution: Approaching $(0,0)$ along the x-axis $y=0$, the numerator vanishes (while the denominator is nonzero), so the limit is zero.
Approaching $(0,0)$ along the line $y=x$, the limit becomes

$$
\lim _{x \rightarrow 0} \frac{x^{3} \sin ^{2} x}{2 x^{5}}=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{2 x^{2}}=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{2}=\frac{1}{2}
$$

because $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
Since $\frac{1}{2} \neq 0$, the limit does not exist.
3. (10 points) Find the domain of the function $G(x, y)=4+\sqrt{25-x^{2}}$ (in the form $\{(x, y): \ldots\}$) and then sketch the domain in the $x y$-plane.

Solution: The only restriction is imposed by the square root, so the domain is

$$
\left\{(x, y): 25-x^{2} \geq 0\right\}=\left\{(x, y): x^{2} \leq 25\right\}=\{(x, y):-5 \leq x \leq 5\},
$$

which is a vertical strip on the $x y$-plane.

